Strong Maximum Principles for Anisotropic Elliptic and Parabolic Equations

ثبت نشده
چکیده

We investigate vanishing properties of nonnegative solutions of anisotropic elliptic and parabolic equations. We describe the optimal vanishing sets, and we establish strong maximum principles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic and Parabolic Equations

Elliptic equations: 1. Harmonic functions 2. Perron’s method 3. Potential theory 4. Existence results; the method of suband supersolutions 5. Classical maximum principles for elliptic equations 6. More regularity, Schauder’s theory for general elliptic operators 7. The weak solution approach in one space dimension 8. Eigenfunctions for the Sturm-Liouville problem 9. Generalization to more dimen...

متن کامل

A numerical methodology for enforcing maximum principles and the non-negative constraint for transient diffusion equations

Transient diffusion equations arise in many branches of engineering and applied sciences (e.g., heat transfer and mass transfer), and are parabolic partial differential equations. It is well-known that, under certain assumptions on the input data, these equations satisfy important mathematical properties like maximum principles and the non-negative constraint, which have implications in mathema...

متن کامل

Nonlinear Anisotropic Elliptic and Parabolic Equations in R with Advection and Lower Order Terms and Locally Integrable Data

We prove existence and regularity results for distributional solutions in RN for nonlinear elliptic and parabolic equations with general anisotropic diffusivities as well as advection and lower-order terms that satisfy appropriate growth conditions. The data are assumed to be merely locally integrable.

متن کامل

Generalized Local Maximum Principles for Finite-Difference Operators

The generalized local maximum principle for a difference operator L» asserts that if Lam(jc) > 0 then Vu cannot attain its positive maximum at the net-point x. Here r is a local net-operator such that Tu = u + 0(/i) for any smooth function u. This principle, with simple forms of V, is proved for some quite general classes of second-order elliptic operators Lh, whose associated global matrices a...

متن کامل

The maximum principles and symmetry results for viscosity solutions of fully nonlinear equations

This paper is concerned about maximum principles and radial symmetry for viscosity solutions of fully nonlinear partial differential equations. We obtain the radial symmetry and monotonicity properties for nonnegative viscosity solutions of F ( D2u ) + u = 0 in R (0.1) under the asymptotic decay rate u = o(|x|− 2 p−1 ) at infinity, where p > 1 (Theorem 1, Corollary 1). As a consequence of our s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014